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DAG-based Consensus Protocols

Improvements over Classical Blockchains:

d High performance

d Low communication complexity

(1 Byzantine fault tolerance

Used in Many Modern Blockchains:
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Verification of DAG-based Consensus Protocols

d Testing: Often misses corner-case interleavings.

J Model Checking: Does not scale to real-world instances.

J Parameterized Model Checking: Not yet expressive enough.

Theorem Proving - the only viable option for rigorous verification!




Verification of DAG-based Consensus Protocols

d Proving correctness of each DAG-based consensus protocol

from scratch is infeasible.



Verification of DAG-based Consensus Protocols

d Proving correctness of each DAG-based consensus protocol

from scratch is infeasible.

d We demonstrate that DAG-based consensus protocols are
amenable to practical, reusable, and compositional formal

methods.



Verification of DAG-based Consensus Protocols

Safety Verified Specifications in TLA+:
* DAG-Rider
* Cordial Miners
* Hashgraph
 Eventually Synchronous BullShark

 Avariant of Aleph

With proof effort reduced by almost 50%




DAG-based Consensus Protocols Solve the Byzantine
Atomic Broadcast Problem

d N processes; some may be Byzantine-faulty.
( Each process can propose and output blocks.

 All correct processes eventually output same set of blocks
and in the same order (Agreement, Total order).

J No correct process outputs same block more than once (Integrity).

1 A block proposed by a correct process is eventually output by all
correct processes (Validity).
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DAG-based Consensus Protocols Solve the Byzantine
Atomic Broadcast Problem in Two Phases

Processes communicate their
blocks and build a DAG of
exchanged blocks.

DAG Construction
Phase

Processes use their locally

Ordering Phase constructed DAGs to determine
the total order of the blocks.



Processes Communicate Their Blocks

DAG Construction ]
and Build a DAG of Exchanged Blocks

Phase

‘ ‘ "

P1 P2 P3

\ 4



Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks

Phase
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A process creates new blocks in the form of vertices.
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Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks
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A process creates a new vertex by referencing it to its
last vertex and other vertices in its local DAG.
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Processes Communicate Their Blocks

DAG Construction
and Build a DAG of Exchanged Blocks

Phase
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A process communicates newly created vertices
11 along with their references to other processes.



Processes Communicate Their Blocks

DAG Construction
and Build a DAG of Exchanged Blocks

Phase
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When a process receives a vertex from another processes, it
12 checks whether it has all its references in its local DAG.



Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks

Phase
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If the references existin the process’s local DAG, it adds the
vertex; otherwise, it stores it in a buffer.

P1 P2



Processes Communicate Their Blocks

DAG Construction ]
and Build a DAG of Exchanged Blocks

Phase

P1 P2 P3
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DAG Construction Ensures the

DAG Construction ) )
Consistent Causal History Property

Phase

P1 P2 P3

If a vertex is presentin the local DAG of two correct
processes, then their causal histories are the same.
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DAG Construction Ensures Consistent

DAG Construction )
Causal History Property

Phase
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If a vertex is presentin the local DAG of two correct
processes, then their causal histories are the same.




DAG Construction Phase

Protocol

Comm-

unication DAG-Type

DAG-Rider

Cordial
Miners

ES BullShark

Aleph

Hashgraph
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Comm-
unication DAG-Type
. Reliable
DAG-Rider (RB)
Cc.>rd|al Unreliable
Miners
Reliable
ES BullShark (RB)
Reliable
Aleph (RB)
Hashgraph | Unreliable

16 RB: Reliable Broadcast
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Reliable vs. Unreliable Communication

DAG Construction
Phase

Reliable Communication
(reliable broadcast)

Unreliable Communication
(plain broadcast/ gossip)
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Comm-
unication DAG-Type

. Reliable
DAG-Rider (RB) Structured
Cc.>rd|al Unreliable Structured

Miners
ES BullShark Reliable Structured
(RB)

Reliable

Aleph (RB) Structured

Hashgraph | Unreliable Unstructured

19 RB: Reliable Broadcast
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DAG Construction
Phase

Structured vs. Unstructured
DAG Construction

Structured DAG Construction Unstructured DAG Construction
(round-driven) (event-driven)
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Ordering Phase

Processes Use Their Local DAGs to
Determine the Total Order of the Vertices

P2 P3
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Ordering Phase

Frame Construction: Partitioning DAGs
into Sequential Frames

P2 P3
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Ordering Phase
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Ordering Phase
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Total Ordering: Using the Causal
Histories of Anchor Vertices

P2 P3



Total Ordering: Using the Causal
Ordering Phase Histories of Anchor Vertices

P1 P2 P3
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Building Blocks and Their Use in Verifying

Five DAG-based Consensus Protocols

GPC ordering VV ordering

| S

Cordial Miners DAG-Rider ES Bullshark Aleph* Hashgraph

NS

Unreliable Reliable Unreliable
Structured Structured Unstructured
DAG construction DAG construction DAG construction

GPC: Global Perfect Coin, VV : Virtual Voting
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Specifications and Proofs in TLA+
(Checked with TLAPS)

Why TLA+?
J Produces a specification closer to the

implementation.

J Produces execution traces.

J Supports interface refinement.
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Specifications and Proofs in TLA+
(Checked with TLAPS)

[ Specify safety properties as safety invariants.
d In TLA+ Invariants are proved by induction.

J The hardest challenge: identify relevant inductive

invariants that imply the safety invariants.



Verifying Safety Invariants of GPC Ordering

ChainConsistency ChainMonotonicity

Inv?2 Inv10
Inv1 InvS Inv7 Inv9
‘/// Inv8
Inv4
‘VA///
InV6

vA‘////
Inv3
36



Proof of an Invariant in TLA+

8
9 LEMMA IndInvSLem == Spec => []IndInvS
2  <1>1 Init => IndInvS

wow W

1 BY DEF Init, InitBlocksToPropose, InitBroadcastNetwork, InitBroadcastRecord, InitBuffer, InitDag, InitRound, IndInvS
2 <1>2 ASSUME [Next]_vars, StateType, StateType', IndInvS, IndInv2
3 PROVE IndInvS'

wWow W w

34 <2>1 ASSUME NEW p \in ProcessorSet, NEW b \in BlockSet, ProposeTn(p, b)

35 PROVE IndInvS'

336 BY VertexSetDefPlt, <2>1, <1>2 DEF IndInvS, ProposeTn

337 <2>2 ASSUME NEW p \in ProcessorSet, NextRoundTn(p)

338 PROVE IndInvS'

339 <3>1 ASSUME NEW r \in RoundSet, NEW v \in VertexSet, Broadcast(p, r, v)

340 PROVE IndInvS'

341 <4>1 CASE broadcastRecord[p][r] = FALSE

342 <5>1 broadcastNetwork'["History"] = broadcastNetwork["History"] \cup {[sender |-> p, inRound |-> r, vertex |-> v]}

343 BY <3>1, <2>2, <1>2, <4>1 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType, Broadcast
344 <5>2 broadcastRecord’' = [broadcastRecord EXCEPT ![p][r] = TRUE]

345 BY <3>1, <2>2, <1>2, <4>1 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType, Broadcast
346 <5>3 ASSUME NEW m \in broadcastNetwork'["History"], NEW o \in broadcastNetwork'["History"], m.sender = o.sender, m.inRound = o.inRound

w

47 PROVE m = o

348 <6>1 CASE m \in broadcastNetwork["History"] /\ o = [sender |-> p, inRound |-> r, vertex |-> v]
349 <7>1 broadcastRecord[m.sender][m.inRound] = TRUE

350 BY <6>1, <1>2 DEF IndInv2

351 <7> QED BY <4>1, <7>1, <6>1, <5>3

352 <6>2 CASE o \in broadcastNetwork["History"] /\ m = [sender |-> p, inRound |-> r, vertex |-> v]
353 <7>1 broadcastRecord[o.sender][c.inRound] = TRUE

354 BY <6>2, <1>2 DEF IndInv2

355 <7> QED BY <4>1, <7>1, <6>2, <5>3

356 <6>3 CASE m \in broadcastNetwork["History"] /\ o \in broadcastNetwork["History"]

357 BY <6>3, <5>3, <1>2 DEF IndInvS

358 <6> QED BY <6>1, <6>2, <6>3, <5>3, <5>1

359 <5> QED BY <1>2, <5>3 DEF IndInvS

360 <4>2 CASE broadcastRecord[p][r] = TRUE

361 <5>1 UNCHANGED <<broadcastNetwork, broadcastRecord>>

362 BY <4>2, <2>2, <3>1 DEF Broadcast

363 <5> QED BY <5>1, <1>2 DEF IndInv5S

364 <4> QED BY <4>1, <4>2, <3>1, <2>2, <1>2 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType
365 <3> QED BY VertexSetDefPlt, <2>2, <1>2, CreateVertexTypePlt, <3>1 DEF IndInv5, NextRoundTn, Broadcast

366 <2>3 ASSUME NEW p \in ProcessorSet, NEW r \in RoundSet, NEW q \in ProcessorSet, NEW v \in VertexSet, p# q, ReceiveVertexTn(p, q, r, V)
367 PROVE IndInvS'

368 <3>1 broadcastNetwork'["History"] = broadcastNetwork["History"]

369 <4>1 p # "History"

370 BY <2>3, ProcSetAsm DEF ProcessorSet

371 <4> QED BY <4>1, <2>3, <1>2 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType, ReceiveVertexTn
372 <3> QED BY <3>1, VertexSetDefPlt, <2>3, <1>2 DEF IndInv5, ReceiveVertexTn

373 <2>4 ASSUME NEW p \in ProcessorSet, NEW v \in VertexSet, AddVertexTn(p, v)

374 PROVE IndInvS'

375 BY VertexSetDefPlt, <2>4, <1>2 DEF IndInv5, AddVertexTn

376 <2>5 CASE UNCHANGED vars

377 BY VertexSetDefPlt, <2>5, <1>2 DEF IndInv5, vars

378 <2> QED BY <1>2, <2>1, <2>2, <2>3, <2>4, <2>5 DEF Next

379 <1> QED BY <1>1, <1>2, Typelem, IndInv2Lem, PTL DEF Spec



38

Evaluation

Metric \ Phase Reliable |Unreliable| Unreliable GPC VV
structured|structured lunstructured|Ordering|Ordering
Size of spec. (# loc) 403 160 230 272 136
Number of invariants 6 6 7 10 18
Size of proof (# loc) 460 594 554 822 2120
Max level of proof tree nodes 10 9 8 9 13
Max degree of proof tree nodes 7 8 7 7 11
# obligations in TLAPS 633 895 665 1302 3316
Time to check by TLAPS (s) 49 68 74 125 651
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Conclusion

Approach and Insight:

JAnalyzed five protocols, uncovering reusable patterns.

(J Extracted reusable building blocks, reducing verification effort by ~50%.

Potential Impact on Verifying Other DAG-based Protocols:

JReusability: Existing building blocks can be reused across other protocols.

JExtendiblity: New building blocks can be added to broaden reuse.
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