Reusable Formal Verification
of DAG-based Consensus Protocols (In TLA+)

Nathalie Bertrand

Rennes University, Inria, CNRS.

Pranav Ghorpade
The University of Sydney.

Sasha Rubin
The University of Sydney.

Bernhard Scholz

Sonic Research, The University of Sydney.

Pavle Subotic¢
Sonic Research.

UNKEESKIE DE% 1 1 June 2025

Total number of protocols

DAG-based Consensus Protocols

60 Sailfish
Mahi-Mahi
50 |-
l’)r[:%(-R'dD]f\u(l}l SK?GHT '
40 encomacs Il -
cuast _Il
Aleph
30 Prism F/./
Par. Chain§
OHIE
20
Hedera
1 0 SPECTRE
;jﬁ:ve Figure Source:
8 Raikwar et al., SoK:
‘ DAG-based
%Q\% %Q\/% qp\(\ %Qx%qg\o‘) q)@p %@}%Q‘ﬂ%@»%%g‘}b’ Consensus Protocols,

IEEE ICBC 2024.

DAG-based Consensus Protocols

Improvements over Classical Blockchains:

d High performance

d Low communication complexity

(1 Byzantine fault tolerance

Used in Many Modern Blockchains:

@ Hedera [fantom ALzPH zzac Qsui
2

Verification of DAG-based Consensus Protocols

d Testing: Often misses corner-case interleavings.

J Model Checking: Does not scale to real-world instances.

J Parameterized Model Checking: Not yet expressive enough.

Theorem Proving - the only viable option for rigorous verification!

Verification of DAG-based Consensus Protocols

d Proving correctness of each DAG-based consensus protocol

from scratch is infeasible.

Verification of DAG-based Consensus Protocols

d Proving correctness of each DAG-based consensus protocol

from scratch is infeasible.

d We demonstrate that DAG-based consensus protocols are
amenable to practical, reusable, and compositional formal

methods.

Verification of DAG-based Consensus Protocols

Safety Verified Specifications in TLA+:
* DAG-Rider
* Cordial Miners
* Hashgraph
 Eventually Synchronous BullShark

 Avariant of Aleph

With proof effort reduced by almost 50%

DAG-based Consensus Protocols Solve the Byzantine
Atomic Broadcast Problem

d N processes; some may be Byzantine-faulty.
(Each process can propose and output blocks.

 All correct processes eventually output same set of blocks
and in the same order (Agreement, Total order).

J No correct process outputs same block more than once (Integrity).

1 A block proposed by a correct process is eventually output by all
correct processes (Validity).

DAG-based Consensus Protocols Solve the Byzantine
Atomic Broadcast Problem

d N processes; some may be Byzantine-faulty.
(Each process can propose and output blocks.

 All correct processes eventually output same set of blocks
and in the same order (Agreement, Total order).

J No correct process outputs same block more than once (Integrity).

1 A block proposed by a correct process is eventually output by all
correct processes (Validity).

DAG-based Consensus Protocols Solve the Byzantine
Atomic Broadcast Problem in Two Phases

Processes communicate their
blocks and build a DAG of
exchanged blocks.

DAG Construction
Phase

Processes use their locally

Ordering Phase constructed DAGs to determine
the total order of the blocks.

Processes Communicate Their Blocks

DAG Construction]
and Build a DAG of Exchanged Blocks

Phase

‘ ‘ "

P1 P2 P3

\ 4

Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks

Phase
~
C @ " -
P1 P2 P3

A process creates new blocks in the form of vertices.

10

Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks

Phase

‘ ‘ "

P1 P2 P3

A process creates a new vertex by referencing it to its
last vertex and other vertices in its local DAG.

Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks

Phase

P1 P2 P3

A process creates a new vertex by referencing it to its
10 last vertex and other vertices in its local DAG.

Processes Communicate Their Blocks

DAG Construction
and Build a DAG of Exchanged Blocks

Phase

le o

P1 P2 P3

A process communicates newly created vertices
11 along with their references to other processes.

Processes Communicate Their Blocks

DAG Construction
and Build a DAG of Exchanged Blocks

Phase

®. . 0.0,

P1 P2 P3

When a process receives a vertex from another processes, it
12 checks whether it has all its references in its local DAG.

Processes Communicate Their Blocks

DAG Construction
e and Build a DAG of Exchanged Blocks

Phase

\ 4

™N
%

If the references existin the process’s local DAG, it adds the
vertex; otherwise, it stores it in a buffer.

P1 P2

Processes Communicate Their Blocks

DAG Construction]
and Build a DAG of Exchanged Blocks

Phase

P1 P2 P3

13

14

DAG Construction Ensures the

DAG Construction))
Consistent Causal History Property

Phase

P1 P2 P3

If a vertex is presentin the local DAG of two correct
processes, then their causal histories are the same.

14

DAG Construction Ensures Consistent

DAG Construction)
Causal History Property

Phase
® © - ® ©
P1 P2 P3

If a vertex is presentin the local DAG of two correct
processes, then their causal histories are the same.

DAG Construction Phase

Protocol

Comm-

unication DAG-Type

DAG-Rider

Cordial
Miners

ES BullShark

Aleph

Hashgraph

15

() A 0 0 -

Comm-
unication DAG-Type
. Reliable
DAG-Rider (RB)
Cc.>rd|al Unreliable
Miners
Reliable
ES BullShark (RB)
Reliable
Aleph (RB)
Hashgraph | Unreliable

16 RB: Reliable Broadcast

17

Reliable vs. Unreliable Communication

DAG Construction
Phase

Reliable Communication
(reliable broadcast)

Unreliable Communication
(plain broadcast/ gossip)

() A 0 0 -

Comm-
unication DAG-Type
. Reliable
DAG-Rider (RB)
Cc.>rd|al Unreliable
Miners
Reliable
ES BullShark (RB)
Reliable
Aleph (RB)
Hashgraph | Unreliable

18 RB: Reliable Broadcast

) LA 0 DN PNAaSE

Comm-
unication DAG-Type

. Reliable
DAG-Rider (RB) Structured
Cc.>rd|al Unreliable Structured

Miners
ES BullShark Reliable Structured
(RB)

Reliable

Aleph (RB) Structured

Hashgraph | Unreliable Unstructured

19 RB: Reliable Broadcast

20

DAG Construction
Phase

Structured vs. Unstructured
DAG Construction

Structured DAG Construction Unstructured DAG Construction
(round-driven) (event-driven)

) LA 0 DN PNAaSE

Comm-
unication DAG-Type

. Reliable
DAG-Rider (RB) Structured
Cc.>rd|al Unreliable Structured

Miners
ES BullShark Reliable Structured
(RB)

Reliable

Aleph (RB) Structured

Hashgraph | Unreliable Unstructured

21 RB: Reliable Broadcast

) LA 0 DN PNAaSE

Comm-
unication DAG-Type

. Reliable
DAG-Rider (RB) Structured
Cc.>rd|al Unreliable Structured

Miners

ES BullShark | cuable g ctured

(RB)

Reliable
Aleph (RB) Structured

Hashgraph | Unreliable Unstructured

22 RB: Reliable Broadcast

23

Ordering Phase

Processes Use Their Local DAGs to
Determine the Total Order of the Vertices

P2 P3

24

Ordering Phase

Frame Construction: Partitioning DAGs
into Sequential Frames

P2 P3

25

Ordering Phase

N
Vol

P1

Anchor Selection: Agree on a Vertex

per Frame

N
%

P2

P3

25

Ordering Phase

N
yols

P1

Anchor Selection: Agree on a Vertex

per Frame

N
%

P2

P3

Ordering Phase

P1

000
26

Total Ordering: Using the Causal
Histories of Anchor Vertices

P2 P3

Total Ordering: Using the Causal
Ordering Phase Histories of Anchor Vertices

P1 P2 P3

000 000000 000000
26

) LA 0 DN PNAaSE

Comm-
unication DAG-Type

. Reliable
DAG-Rider (RB) Structured
Cc.>rd|al Unreliable Structured

Miners

ES BullShark | cuable g ctured

(RB)

Reliable
Aleph (RB) Structured

Hashgraph | Unreliable Unstructured

27 RB: Reliable Broadcast

JF 0 DN PNAaSE Jrde

Comm- Anchor
unication ~ D/\CTTYPe Agreement
DAG-Rider Re(ng[))le Structured GPC-based
Cc.>rd|al Unreliable Structured GPC-based
Miners
Reliable GPC-style
ES BullShark (RB) Structured (deterministic)
Reliable Virtual Voting
Aleph (RB) Structured hased
Hashgraph | Unreliable Unstructured Virtual Voting
based

28 RB: Reliable Broadcast, GPC: Global Perfect Coin

JF 0 DN PNAaSE Jrde o

Comm- DAG-Tvpe Anchor Fork
unication P Agreement Handling
DAG-Rider Re(lF;aBl:;le Structured GPC-based -
Cc.>rd|al Unreliable Structured GPC-based Required
Miners
Reliable GPC-style
ES BullShark (RB) Structured (deterministic) -
Reliable Virtual Voting
Aleph (RB) Structured hased -
Virtual Voting

Hashgraph | Unreliable Unstructured Required

based

29 RB: Reliable Broadcast, GPC: Global Perfect Coin

JF 0 DN PNAaSE Jrde o

Comm- DAG-Tvpe Anchor Fork
unication P Agreement Handling
DAG-Rider Re(ng[))le Structured GPC-based -
Cc.>rd|al Unreliable Structured GPC-based Required
Miners
Reliable GPC-style
ES BullShark (RB) Structured (deterministic) -
Reliable Virtual Voting
Aleph (RB) Structured hased -
Virtual Voting

Hashgraph | Unreliable Unstructured Required

based

29 RB: Reliable Broadcast, GPC: Global Perfect Coin

JF 0 DN PNAaSE Jrde g

Comm- DAG-Tvpe Anchor Fork DAG
unication P Agreement Handling Processing
DAG-Rider Re(ng[))le Structured GPC-based - -
Cc.>rd|al Unreliable Structured GPC-based Required -
Miners
Reliable GPC-style
ES BullShark (RB) Structured (deterministic) - -
Reliable Virtual Voting
Aleph (RB) Structured hased - -
Hashgraph | Unreliable Unstructured thzzls\e/(()jtmg Required Required

30 RB: Reliable Broadcast, GPC: Global Perfect Coin

JF 0 DN PNAaSE Jrde g

Comm- DAG-Tvpe Anchor Fork DAG
unication P Agreement Handling Processing
DAG-Rider Re(ng[))le Structured GPC-based - -
Cc.>rd|al Unreliable Structured GPC-based Required -
Miners
Reliable GPC-style
ES BullShark (RB) Structured (deterministic) - -
Reliable Virtual Voting
Aleph (RB) Structured hased - -
Hashgraph | Unreliable Unstructured thm;zls\e/(()jtmg Required Required

30 RB: Reliable Broadcast, GPC: Global Perfect Coin

JF 0 DN PNAaSE Jrde g

Comm- DAG-Tvpe Anchor Fork DAG
unication P Agreement Handling Processing
DAG-Rider Re(lF;aBlc;le Structured GPC-based - -
Cc.>rd|al Unreliable Structured GPC-based Required -
Miners
Reliable GPC-style
ES BullShark (RB) Structured enermin e - -
Reliable Virtual Voting
Aleph (RB) Structured hased - -
Hashgraph | Unreliable Unstructured thEzlS\e/(()jtmg Required Required

31 RB: Reliable Broadcast, GPC: Global Perfect Coin

) A °

Comm- DAG-Tvpe DAG Fork Anchor
unication P Processing Handling Agreement
DAG-Rider Re(lF;aBlc;le Structured - - GPC-based
Cc.>rd|al Unreliable Structured - Required GPC-based
Miners
Reliable GPC-style
ES BullShark (RB) Structured - - Wil i)
Reliable Virtual Voting
Aleph (RB) Structured - - based
Hashgraph | Unreliable Unstructured Required Required Vlrtzzg\elztmg

31 RB: Reliable Broadcast, GPC: Global Perfect Coin

) A °

Comm- DAG-Tvpe DAG Fork Anchor
unication P Processing Handling Agreement
DAG-Rider Re(ng[))le Structured - - GPC-based
Cc.>rd|al Unreliable Structured - Required GPC-based
Miners
Reliable GPC-style
ES BullShark (RB) Structured - - (deterministic)
Reliable Virtual Voting
Aleph (RB) Structured - - hased
Hashgraph | Unreliable Unstructured Required Required Vlrtgzls\e/ztlng

31 RB: Reliable Broadcast, GPC: Global Perfect Coin

) A °

Comm- DAG-Tvbe ; DAG Fork Anchor
unication P ! Processing Handling Agreement
I |
DAG-Rider Re(ng[))le Structured 1 - - GPC-based
|
(:49rd|al Unreliable Structured : - Required GPC-based
iners !
|
Reliable ! GPC-style
ES BullShark (RB) Structured : - - (deterministic)
Reliable ; Virtual Voting
Aleph (RB) Structured : - - hased
: : :
Hashgraph | Unreliable Unstructured : Required Required Virtual Voting

based

32

) A °

Comm- DAG-Tvbe ; DAG Fork Anchor
unication P ! Processing Handling Agreement
i |
DAG-Rider Re(lF;TBI:;le Structured 1 - - GPC-based
|
f:rdlal Unreliable Structured : - Required GPC-based
iners !
|
Reliable ! GPC-style
ES BullShark (RB) Structured : - - (deterministic)
Reliable ; Virtual Voting
Aleph (RB) Structured : - - hased
: : :
Hashgraph | Unreliable Unstructured : Required Required Virtual Voting

based

32

) A °

Comm- DAG-Tvbe DAG Fork ' Anchor
unication P Processing Handling ! Agreement
i |
DAG-Rider Reliable Structured - - I GPC-based
(RB) |
Cc.>rd|al Unreliable Structured - Required : GPC-based
Miners |
|
Reliable 1 GPC-style
ES BullShark (RB) Structured : (deterministic)
Reliable | Virtual Voting
Aleph (RB) Structured - - : hased
L\ :
Hashgraph | Unreliable Unstructured Required Required :VlrtualVotlng

based

32

) A D 0 = s -
rotocc C DAG Fork ' Anch
omm- or nchor
- |
unication DAG-Type Processing Handling ! Agreement
i i
DAG-Rider Re(lF'{aBt)’le Structured : : | GPC-based
|
(:4c.>rd|al Unreliable Structured - Required : GPC-based
iners |
. |
ES BullShark Reliable Structured - - | GPC—§t3./le.
(RB) , (deterministic)
Reliable | Virtual Voting
Aleph (RB) Structured - - | hased
| G :
Hashgraph | Unreliable Unstructured Required Required :VlrtualVotmg

based

32

33

Building Blocks and Their Use in Verifying

Five DAG-based Consensus Protocols

GPC ordering VV ordering

| S

Cordial Miners DAG-Rider ES Bullshark Aleph* Hashgraph

NS

Unreliable Reliable Unreliable
Structured Structured Unstructured
DAG construction DAG construction DAG construction

GPC: Global Perfect Coin, VV : Virtual Voting

34

Specifications and Proofs in TLA+
(Checked with TLAPS)

Why TLA+?
J Produces a specification closer to the

implementation.

J Produces execution traces.

J Supports interface refinement.

35

Specifications and Proofs in TLA+
(Checked with TLAPS)

[Specify safety properties as safety invariants.
d In TLA+ Invariants are proved by induction.

J The hardest challenge: identify relevant inductive

invariants that imply the safety invariants.

Verifying Safety Invariants of GPC Ordering

ChainConsistency ChainMonotonicity

Inv?2 Inv10
Inv1 InvS Inv7 Inv9
‘/// Inv8
Inv4
‘VA///
InV6

vA‘////
Inv3
36

Proof of an Invariant in TLA+

8
9 LEMMA IndInvSLem == Spec => []IndInvS
2 <1>1 Init => IndInvS

wow W

1 BY DEF Init, InitBlocksToPropose, InitBroadcastNetwork, InitBroadcastRecord, InitBuffer, InitDag, InitRound, IndInvS
2 <1>2 ASSUME [Next]_vars, StateType, StateType', IndInvS, IndInv2
3 PROVE IndInvS'

wWow W w

34 <2>1 ASSUME NEW p \in ProcessorSet, NEW b \in BlockSet, ProposeTn(p, b)

35 PROVE IndInvS'

336 BY VertexSetDefPlt, <2>1, <1>2 DEF IndInvS, ProposeTn

337 <2>2 ASSUME NEW p \in ProcessorSet, NextRoundTn(p)

338 PROVE IndInvS'

339 <3>1 ASSUME NEW r \in RoundSet, NEW v \in VertexSet, Broadcast(p, r, v)

340 PROVE IndInvS'

341 <4>1 CASE broadcastRecord[p][r] = FALSE

342 <5>1 broadcastNetwork'["History"] = broadcastNetwork["History"] \cup {[sender |-> p, inRound |-> r, vertex |-> v]}

343 BY <3>1, <2>2, <1>2, <4>1 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType, Broadcast
344 <5>2 broadcastRecord’' = [broadcastRecord EXCEPT ![p][r] = TRUE]

345 BY <3>1, <2>2, <1>2, <4>1 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType, Broadcast
346 <5>3 ASSUME NEW m \in broadcastNetwork'["History"], NEW o \in broadcastNetwork'["History"], m.sender = o.sender, m.inRound = o.inRound

w

47 PROVE m = o

348 <6>1 CASE m \in broadcastNetwork["History"] /\ o = [sender |-> p, inRound |-> r, vertex |-> v]
349 <7>1 broadcastRecord[m.sender][m.inRound] = TRUE

350 BY <6>1, <1>2 DEF IndInv2

351 <7> QED BY <4>1, <7>1, <6>1, <5>3

352 <6>2 CASE o \in broadcastNetwork["History"] /\ m = [sender |-> p, inRound |-> r, vertex |-> v]
353 <7>1 broadcastRecord[o.sender][c.inRound] = TRUE

354 BY <6>2, <1>2 DEF IndInv2

355 <7> QED BY <4>1, <7>1, <6>2, <5>3

356 <6>3 CASE m \in broadcastNetwork["History"] /\ o \in broadcastNetwork["History"]

357 BY <6>3, <5>3, <1>2 DEF IndInvS

358 <6> QED BY <6>1, <6>2, <6>3, <5>3, <5>1

359 <5> QED BY <1>2, <5>3 DEF IndInvS

360 <4>2 CASE broadcastRecord[p][r] = TRUE

361 <5>1 UNCHANGED <<broadcastNetwork, broadcastRecord>>

362 BY <4>2, <2>2, <3>1 DEF Broadcast

363 <5> QED BY <5>1, <1>2 DEF IndInv5S

364 <4> QED BY <4>1, <4>2, <3>1, <2>2, <1>2 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType
365 <3> QED BY VertexSetDefPlt, <2>2, <1>2, CreateVertexTypePlt, <3>1 DEF IndInv5, NextRoundTn, Broadcast

366 <2>3 ASSUME NEW p \in ProcessorSet, NEW r \in RoundSet, NEW q \in ProcessorSet, NEW v \in VertexSet, p# q, ReceiveVertexTn(p, q, r, V)
367 PROVE IndInvS'

368 <3>1 broadcastNetwork'["History"] = broadcastNetwork["History"]

369 <4>1 p # "History"

370 BY <2>3, ProcSetAsm DEF ProcessorSet

371 <4> QED BY <4>1, <2>3, <1>2 DEF StateType, BlocksToProposeType, BroadcastNetworkType, BroadcastRecordType, BufferType, DagType, RoundType, ReceiveVertexTn
372 <3> QED BY <3>1, VertexSetDefPlt, <2>3, <1>2 DEF IndInv5, ReceiveVertexTn

373 <2>4 ASSUME NEW p \in ProcessorSet, NEW v \in VertexSet, AddVertexTn(p, v)

374 PROVE IndInvS'

375 BY VertexSetDefPlt, <2>4, <1>2 DEF IndInv5, AddVertexTn

376 <2>5 CASE UNCHANGED vars

377 BY VertexSetDefPlt, <2>5, <1>2 DEF IndInv5, vars

378 <2> QED BY <1>2, <2>1, <2>2, <2>3, <2>4, <2>5 DEF Next

379 <1> QED BY <1>1, <1>2, Typelem, IndInv2Lem, PTL DEF Spec

38

Evaluation

Metric \ Phase Reliable |Unreliable| Unreliable GPC VV
structured|structured lunstructured|Ordering|Ordering
Size of spec. (# loc) 403 160 230 272 136
Number of invariants 6 6 7 10 18
Size of proof (# loc) 460 594 554 822 2120
Max level of proof tree nodes 10 9 8 9 13
Max degree of proof tree nodes 7 8 7 7 11
obligations in TLAPS 633 895 665 1302 3316
Time to check by TLAPS (s) 49 68 74 125 651

38

Evaluation

Metric \ Phase Reliable |Unreliable| Unreliable GPC VV
structured|structured lunstructured|Ordering|Ordering
Size of spec. (# loc) 403 160 230 272 136
Number of invariants 6 6 7 10 18
Size of proof (# loc) 460 594 554 822 2120
Max level of proof tree nodes 10 9 8 9 13
Max degree of proof tree nodes 7 8 7 7 11
obligations in TLAPS 633 895 665 1302 3316
Time to check by TLAPS (s) 49 68 74 125 651

39

Conclusion

Approach and Insight:

JAnalyzed five protocols, uncovering reusable patterns.

(J Extracted reusable building blocks, reducing verification effort by ~50%.

Potential Impact on Verifying Other DAG-based Protocols:

JReusability: Existing building blocks can be reused across other protocols.

JExtendiblity: New building blocks can be added to broaden reuse.

39

Conclusion

Approach and Insight:

JAnalyzed five protocols, uncovering reusable patterns.

(J Extracted reusable building blocks, reducing verification effort by ~50%.

Potential Impact on Verifying Other DAG-based Protocols:

JReusability: Existing building blocks can be reused across other protocols.

JExtendiblity: New building blocks can be added to broaden reuse.

« _-
Thank You £ SONIC “kekied

Nathalie Bernhard, Pranav Ghorpade, Sasha Rubin, Bernhard Scholz, Pavle Suboti¢

